Struktur Atom
Bagian | Penemu | Alat |
Elektron | JJ.Thomson | Tabung katode |
Proton | Eugen Goldstein | Tabung katode sinar kanal |
Neutron | James Chadwick | Sinar alfa pada boron & parafin |
A è nomor massa (proton + neutron)
Z è nomor atom (proton)
Isotop è proton sama (unsur sama nomor massa beda)
Isoton è neutron sama (unsur beda/proton beda)
Isobar è nomor massa sama ( unsur beda/proton beda)
Konfigurasi Elektron Niels Bohr
Nomor Kulit (n)
|
Nama kulit
|
Jumlah elektron maksimum (2n2)
|
1
|
K
|
2
|
2
|
L
|
8
|
3
|
M
|
18
|
4
|
N
|
32
|
5
|
O
|
50
|
6
|
P
|
72
|
7
|
Q
|
98
|
- Triade Döbereiner (1829)
- Teori Oktet Newland (1865)
- Sistem periodik Mendeléeff (1869)
- Sistem periodik modern
Periode
Periode | Sebutan | Jumlah unsur |
1 | Sangat pendek | 2 |
2-3 | Pendek | 8 |
4-5 | Panjang | 18 |
6 | Sangat panjang | 32 (ada Lantanida [58-71]) |
7 | Belum lengkap | 24 (ada Aktinida [90-103]) |
Golongan | Nama Khusus |
IA/1 | Alkali |
IIA/2 | Alkali tanah |
VIA/16 | Khalkogen |
VIIA/17 | Halogen |
VIIIA/18 | Gas mulia |
Hubungan Konfigurasi Elektron dan Sistem Periodik
- Jumlah kulit elektron menunjukkan letak periode
- Elektron valensi menunjukkan letak golongan
Sifat-sifat Keperiodikan
- Jari-jari atom
- Energi ionisasi
Energi ionisasi ≈ ; Energi ionsisasi ≈ ;
Makin ke atas dan kanan makin besar energi ionisasinya
- Afinitas Elektron
Afinitas ≈ ; Afinitas ≈ ;
Makin ke atas dan kanan makin besar afinitas
- Keelektronegatifan
Keelektronegatifan ≈ ; Keelektronegatifan ≈ ;
Makin ke atas dan kanan makin besar keelektronegatifannya
Ikatan Kimia
- Ikatan ion
- Ikatan kovalen
1) Ikatan kovalen polar => atom yang berikatan berbeda. Cth: HCl
2) Ikatan kovalen nonpolar => atom yang berikatan sama. Cth: O2, H2
- Ikatan kovalen koordinasi
Rumus Kimia
Diatur oleh IUPAC (International Union Pure and Applied Chemistry).
Rumus kimia suatu zat menyatakan komposisi dari partikel penyusun zat tersebut, yang dinyatakan dengan lambang unsur penyusun serta perbandingan jumlah atom-atom unsur penyusun zat tersebut.
- Rumus molekul è menyatakan jenis dan jumlah yang sesungguhnya dari atom yang menyusun suatu molekul
- Rumus empiris è menyatakan jenis dan jumlah perbandingan yang paling sederhana dari atom yang menyusun suatu molekul
Tata Nama Senyawa
- Senyawa Biner (dua macam unsur)
- Unsur yang dibelakang ditambah akhiran ida
- Jumlah atom unsur disebut dengan angka latin
- Senyawa Ion
Wujud Senyawa
(s) : solid (padatan)
(l) : liquid (cairan)
(aq) : aqueus (larutan)
(g) : gas
Hukum Dasar Ilmu Kimia
- Hukum kekekalan massa / Hukum Lavoisier
- Hukum perbandingan tetap / Hukum Proust
- Hukum perbandingan kelipatan / Hukum Dalton
- Hukum perbandingan volum / Hukum Gay Lussac
- Hipotesis Avogadro
Jika diukur pada suhu dan tekanan yang sama perbandingan volum gas yang terlibat dalam reaksi sama merupakan angka yang bulat dan sederhana
Perhitungan Kimia
- Massa atom relatif
- Massa molekul relatif
- Persentase unsur dalam senyawa
Hukum Gas Ideal
1) Hk Boyle : Pada suhu tetap dan jumlah mol tetap, berlaku P ≈ 1/V
2) Hk Amonton : Pada volum dan jumlah mol tetap, maka P ≈ T
3) Hk Charles : Pada tekanan dan jumlah mol tetap, maka V ≈ T
4) Hipotesa Avogadro : Pada tekanan dan suhu tetap, maka V ≈ n
Jadi,
PV = nRT
R = tetapan gas ideal = 0,082
P = atm
T = Kelvin
V = liter
n = mol
Jembatan Mol
n = = = M V =
Hukum Avogadro
Pada suhu dan tekanan yang sama sejumlah volum yang sama suatu gas mengandung jumlah molekul yang sama.
Maka,
V1 : V2 = n1 : n2
Larutan Elektrolit dan Nonelektrolit
Elektrolit è dapat menghantarkan listrik (banyak gelembung). Senyawa ion dan sebagian senyawa kovalen adalah elektrolit.
Nonelektrolit è tidak dapat menghantarkan listrik (sedikit atau tidak ada gelembung). Kebanyakan senyawa kovalen.
Reaksi Redoks
- Reaksi oksidasi è pengikatan oksigen/pelepasan elektron/kenaikan biloks
- Reaksi reduksi è pelepasan oksigen/pengikatan elektron/penurunan biloks
- Senyawa yang bila tidak dibakar sempurna akan menghasilkan CO2
- Sumbernya adalah tumbuhan & hewan (protein, karbohidrat, lemak, dll), batubara, gas alam, dan minyak bumi.
Perbedaan | Senyawa Karbon Organik | Senyawa Karbon Anorganik |
Kestabilan terhadap pemanasan | Mudah terurai | Stabil |
Kelarutan | Mudah larut dalam pelarut nonpolar | Mudah larut dalam pelarut polar |
Titik lebur dan titik didih | Relatif rendah | Ada yang sangat tinggi, ada yang sangat rendah |
Kereaktifan | Kurang reaktif | Reaktif |
Rantai atom karbon | Punya | Tidak punya |
Punya empat elektron valensi sehingga bisa banyak variasi ikatan
- Berdasarkan jumlah ikatan
2) Rangkap dua
3) Rangkap tiga
- Berdasarkan bentuk rantai
2) Tertutup (siklis(4)/aromatis(6)) è ujung-ujung atom karbonnya saling bertemu
- Kedudukan atom karbon dalam rantai
2) Sekunder è terikat dengan dua atom karbon lain
3) Tersier è terikat dengan tiga atom karbon lain
4) Kuartener è terikat dengan empat atom karbon lain
Hidrokarbon
Adalah senyawa karbon yang terdiri atas atom karbon dan hidrogen.
1) Hidrokarbon jenuh, yaitu hidrokarbon yang pada rantai karbonnya semua berikatan tunggal. Disebut juga alkana.
2) Hidrokarbon tak jenuh, yaitu hidrokarbon yang pada rantai karbonnya terdapat ikatan rangkap dua (alkena) atau rangkap tiga (alkuna).
Tata nama Hidrokarbon
Jumlah atom C
|
Awalan
|
Jumlah atom C
|
Awalan
|
1
| Met |
8
| Okta |
2
| Et |
9
| Nona |
3
| Prop |
10
| Deka |
4
| But |
11
| Undeka |
5
| Pent |
12
| Dodeka |
6
| Heks |
20
| Eikosa |
7
| Hepta |
21
| Heneikosa |
30
| Trikonta |
- Rumus umum CnH2n+2 (n=jml atom C)
- Hanya punya isomeri rantai (Isomeri è senyawa karbon rumus molekul sama tapi strukturnya beda)
- Makin panjang rantai karbon makin tinggi titik didihnya.
- Parafin (kurang reaktif), karena semua ikatannya kovalen sempurna.
- Makin panjang rantai karbon, makin berkurang kereaktifannya.
- Umumnya digunakan sebagai bahan bakar.
Tata nama alkana
1) Diakhiri ana
2) Jika rantai karbon tak bercabang, didepan nama tersebut diberi huruf n. Cth : n-butana
3) Bila bercabang:
- Tentukan rantai utama
- Beri nomor urut dari ujung yang paling dekat dengan cabang
5) Cabang yang menempel pada cabang utama (cabang dari rantai utama) diberi nama tertentu. Cth: C3H7 è isopropil/sekunder propil, C4H9 è neobutil atau tersier butil
6) Urutankan penyebutannya.
Nomor letak cabang – nama cabang – nama rantai utama.
Cth: 2-metil-pentana
7) Bila ada lebih dari satu cabang yang sama, maka disebut sekali dengan diawali angka latin. Bila ada lebih dari satu cabang yang berbeda, maka susun melalui nama cabang secara alfabetis.
Cth: 3-etil-2,2,5-trimetil-heksana
Alkena
- Rumus umum CnH2n (n=jml atom C)
- Makin panjang rantai karbon makin tinggi titik lebur dan titik didihnya.
- Alkena alami contohnya karet. Alkena sintetis contohnya plastik.
- Punya 3 macam isomeri
- Isomeri rantai
- Isomeri posisi/ikatan rangkap
- Isomeri geometri (posisi secara 3D)
1) Diakhiri ena
2) Rantai utama diambil dari rantai terpanjang yang mengandung ikatan rangkap.
3) Penomoran dimulai dari ujung yang paling dekat dengan ikatan rangkap.
4) Ikatan rangkap diberi nomor untuk menunjukkan letak ikatan rangkap
5) Jika rantai karbon tak bercabang, didepan nama tersebut diberi nomor letak ikatan rangkap. Cth : 1-butena
6) Cari gugus cabang. Gugus cabang biasanya adalah alkil (CnH2n+1). Gugus alkil diakhiri oleh akhiran il. Cth: CH3 è metil
7) Cabang yang menempel pada cabang utama (cabang dari rantai utama) diberi nama tertentu. Cth: C3H7 è isopropil/sekunder propil, C4H9 è neobutil atau tersier butil
8) Urutankan penyebutannya.
Nomor letak cabang – nama cabang – nomor ikatan rangkap – nama rantai utama.
Cth: 2-metil-1-pentena
9) Bila ada lebih dari satu cabang yang sama, maka disebut sekali dengan diawali angka latin. Bila ada lebih dari satu cabang yang berbeda, maka susun melalui nama cabang secara alfabetis.
Cth: 3-etil-2,2,5-trimetil-1-heksena
Alkuna
- Rumus umum CnH2n-2 (n=jml atom C)
- Makin panjang rantai karbon, makin tinggi titik didih dan titik leburnya.
- Digunakan sebagai bahan bakiu pembuatan bahan-bahan sintetis, misalnya plastik. Ada juga yang dipakai untuk mengelas, yaitu etuna/asetilena, yaitu gas yang dihasilkan dari pelarutan kalsium karbida (karbid) di air.
- Punya 2 macam isomeri
- Isomeri rantai
- Isomeri posisi/ikatan rangkap
1) Diakhiri una
2) Rantai utama diambil dari rantai terpanjang yang mengandung ikatan rangkap tiga.
3) Penomoran dimulai dari ujung yang paling dekat dengan ikatan rangkap tiga.
4) Ikatan rangkap diberi nomor untuk menunjukkan letak ikatan rangkap tiga.
5) Jika rantai karbon tak bercabang, didepan nama tersebut diberi nomor letak ikatan rangkap. Cth : 1-butuna
6) Cari gugus cabang. Gugus cabang biasanya adalah alkil (CnH2n+1). Gugus alkil diakhiri oleh akhiran il. Cth: CH3 è metil
7) Cabang yang menempel pada cabang utama (cabang dari rantai utama) diberi nama tertentu. Cth: C3H7 è isopropil/sekunder propil, C4H9 è neobutil atau tersier butil
8) Urutankan penyebutannya.
Nomor letak cabang – nama cabang – nomor ikatan rangkap tiga – nama rantai utama.
Cth: 2-metil-1-pentuna
9) Bila ada lebih dari satu cabang yang sama, maka disebut sekali dengan diawali angka latin. Bila ada lebih dari satu cabang yang berbeda, maka susun melalui nama cabang secara alfabetis.
Cth: 3-etil-2,2,5-trimetil-1-heksuna
Sifat Kimia Alkena dan Alkuna
- Lebih reaktif dari alkana.
- Dapat mengalami reaksi adisi, yaitu reaksi penghilangan ikatan rangkap (dua atau tiga).
- Dalam reaksi adisi berlaku aturan Markovnikov
Jika atom karbon yang berikatan rangkap mengikat jumla atom hidrogen yang berbeda, maka atom X akan terikat pada atom karbon yang sedikit mengikat hidrogen.
Jika jumlah atom karbon pada ikatan rangkapnya mengikat jumlah hidrogen sama banyam maka atomX akan terikat pada atom C yang mempunyai rantai karbon paling panjang.
Pengolahan Minyak Bumi
Minyak bumi adalah hasil pelapukan plankton karena tekanan dan sushu tinggi yang berlangsung selama jutaan tahun. Minyak bumi umumnya terdiri dari alkana, sikloalkana, aromatis, alkena, dan alkuna. Proses pengolahannya adalah sebagai berikut.
- Pengolahan Tahap Pertama (Distilasi bertingkat), yaitu distilasi berulang-ulang sehingga didapatkan berbagai hasil melalui titik didihnya.
2) Fraksi Kedua : Nafta (Gas Bumi), disebut juga bensin berat. Diolah di tahap kedua menjadi bensin
3) Fraksi Ketiga/Tengah : Di tahap kedua diolah menjadi kerosin/minyak tanah dan avtur/bahan bakar pesawat
4) Fraksi Keempat : Solar
5) Fraksi Kelima : Residu, dijadikan aspal dan lilin.
- Pengolahan Tahap Kedua (Penyulingan)
2) Ekstraksi. Pembersihan produk dengan pelarut
3) Kristalisasi. Pemisahan produk berdasarkan titik carinya.
4) Pembersihan dari kontaminasi (treating).
Jumlah atom karbon
| Penggunaan |
1-4
| LPG |
5-6
| Petroleum eter (pelarut nonpolar) |
6-7
| Nafta |
5-10
| Bensin |
12-18
| Kerosin/minyak tanah dan avtur/bahan bakar jet |
12<
| solar |
20<
| Oli (cair), lilin & aspal (padat) |
- Bensin à terdiri dari senyawa n-heptana dan isooktana (2,2,4-trimetil pentana)
- Mutu bensin ditentukan oleh “Angka Oktan/Bilangan Oktana”. Makin tinggi angka oktan, makin baik mutu bensin.
- Angka oktan ditentukan oleh persentase isooktana. Cth : 80% isooktana 20% n-heptana, maka angka oktannya adalah 80.
- Angka oktan dapat ditingkatkan dengan menambah TEL (tetra ethyl lead) dengan rumus kimia Pb(C2H5)4 dan 1,2 dibromoetana dengan rumus kimia C2H4Br.
SUMBER : http://tutorjunior.blogspot.com/2009/10/rangkuman-kimia-kelas-x-sma.html
0 comments:
Post a Comment